Note

Assignment of the location of the isopropylidene ring in 1-C-substituted-Lthreo-glycerols by ¹³C-n.m.r. spectroscopy*

EL SAYED H. EL ASHRY**, YELDEZ EL KILANY, AND AHMED MOUSAAD

Chemistry Department, Faculty of Science, Alexandria University, Alexandria (Egypt)
(Received March 11th, 1986; accepted for publication, February 3rd, 1987)

¹³C-N.m.r. spectroscopy has been used for the assignment of the ring size of isopropylidene acetals^{2,3} on the basis of the resonances of the acetal carbon atoms. In addition, the resonances of the carbons bearing a diol function are shifted by 5–10 p.p.m. upon isopropylidenation^{4,5}. We now report on the ¹³C-n.m.r. spectra of the products of isopropylidenation of 3-(L-threo-glycerol-1-yl)-1-phenyl-2-pyrazoline-4,5-dione 4-phenylhydrazone (1), under conditions of kinetic and thermodynamic control^{6,7}.

The assignments of the signals for primary and secondary carbons in the ¹³C-n.m.r. spectrum of 1 were based on the characteristic chemical shifts as compared with those reported for polyols and their substituted analogues⁸. Thus, C-3 reson-

^{*}Heterocycles from Carbohydrate Precursors, Part 42. For Part 41, see ref. 1.

^{**}To whom enquires should be addressed.

NOTE 263

ated at δ 62.36. The higher value (δ 73.47) for C-1 was due to the α -effect of the heterocyclic moiety. The signal for C-2 (δ 68.05) was shifted upfield markedly in comparison to that (δ 70.1-78.0) for polyols due to the β -effect of the heterocyclic ring. The signals for C-2 and C-3 of the 2,3-O-isopropylidene derivative 2 were at δ 66.27 and 75.90, respectively (downfield shifts of 3.91 and 7.85 p.p.m., respectively, reflecting the α -effect of the ketal ring), whereas a reverse shift (3.93 p.p.m.) was observed on the signal (δ 69.54) for C-1, reflecting the β -effect.

When 2 was benzoylated to give 3, the signals for C-3 (δ 66.40) and C-2 (δ 75.91) were affected negligibly (downfield shifts of 0.13 and 0.01 p.p.m., respectively) and the signal (δ 70.5) for C-1 was shifted downfield by 0.96 p.p.m. as a consequence of the α -effect of the benzoyloxy group.

In the ¹³C-n.m.r. spectrum of 3-(3-O-benzoyl-1,2-O-isopropylidene-L-threo-glycerol-1-yl)-1-phenyl-2-pyrazoline-4,5-dione 4-phenylhydrazone (4), the signal (δ 63.95) for C-3 was shifted downfield compared to that of 1, due to its attachment to the benzoyloxy group. The signals for C-2 (δ 74.55) and C-1 (δ 76.94) had more pronounced downfield shifts compared to those of 1 due to the α -effect of the ketal ring. A correlation diagram is shown in Fig. 1.

Buchanan et al.^{2,3} showed that the shifts of the signals of the acetal carbon atoms of dioxolane, dioxane, and dioxepane rings appear in the ranges 108.5-111.4, 97.1-101.1, and 100.8-102.3 p.p.m., respectively. The signals of the acetal carbons of 1-4 appeared within the range for dioxolane rings, and the higher values observed for 3 and 4 could be due to the deshielding effect of the benzoyl group. Thus, the signal of the acetal carbon in 2 appeared at δ 110.43, and at δ 111.72 after benzoylation. The signals of the methyl carbons lie within the range (δ 23.7-27.8) cited for

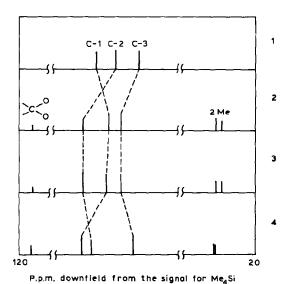


Fig. 1. Correlation diagram of ¹³C-n.m.r. resonances of the glycerolyl part of 1-4.

IABLE				
¹³ C-n.m.r.	DATA	(PROTON	DECOUPLED,	р.р.м.)

Resonance	1	2	3	4
Glycerolyl part				
C-1	73.47	69.54	70.50	74.55
C-2	68.05	75.90	75.91	76.94
C-3	62.36	66.27	66.40	63.95
C<0		110.43	111.72	111.50
C<0 CH ₃		25.45	25.59	27.00
CH ₃		26.76	26.65	27.18

dioxolane rings. The $\Delta\delta$ values for the methyl carbons for 1-4 agreed with the reported value for dioxolanes.

EXPERIMENTAL

TADIE

 13 C-n.m.r. spectra for solutions in CDCl₃ (2-4) and (CD₃)₂SO (1) were recorded with a Varian XL-100 15 spectrometer (see Table I).

The compounds studied were prepared as indicated in refs. 6 and 9. 3-(1-threo-Glycerol-1-yl-1-phenyl-2-pyrazoline-4,5-dione 4-phenylhydrazone⁹ (1), m.p. 113-115°. 3-(2,3-O-Isopropylidene-L-threo-glycerol-1-yl)-1-phenyl-2-pyrazoline-4,5-dione 4-phenylhydrazone⁶ (2), m.p. 169-171°. 3-(1-O-Benzoyl-2,3-O-isopropylidene-L-threo-glycerol-1-yl)-1-phenyl-2-pyrazoline-4,5-dione 4-phenylhydrazone⁶ (3), m.p. 158-159°. 3-(3-O-Benzoyl-1,2-O-isopropylidene-L-threo-glycerol-1-yl)-1-phenyl-2-pyrazoline-4,5-dione 4-phenylhydrazone⁶ (4), m.p. 150-151°.

REFERENCES

- 1 E.S. H. EL ASHRY, Y. EL KILANY, AND A. MOUSAAD, J. Chem. Soc., Perkin Trans. 1, in press.
- 2 J. G. Buchanan, M. E. Chacon-Fuertes, A. R. Edgar, S. J. Moorhouse, D. I. Rawson, and R. H. Wightman, *Tetrahedron Lett.*, 21 (1980) 1793-1796.
- 3 J. G. Buchanan, A. R. Edgar, D. I. Rawson, P. Shahidi, and R. H. Wightman, Carbohydr. Res., 100 (1982) 75-86.
- 4 J. A. MILLS, Adv. Carbohydr. Chem., 10 (1955) 1-53.
- 5 A. S. PERLIN, M. T.P. Int. Rev. Sci., Org. Chem. Ser. Two, 7 (1976) 7-34.
- 6 E. S. H. EL ASHRY, Y. EL KILANY, AND F. SINGAB, Carbohydr. Res., 118 (1983) c10-c12; idem, Abstr. Int. Carbohydr. Symp., XIth, 1982, I-57; idem, J. Chem. Soc., Perkin Trans. 1, in press; F. SINGAB, Ph.D. Thesis, Alexandria University, 1980.
- 7 E.S. H. El Ashry, J. Chem. Soc., Chem. Commun., (1986) 1024-1026.
- 8 G. W. SCHNARR, D. M. VYAS, AND W. A. SZAREK, J. Chem. Soc., Perkin Trans. 1, (1979) 496-503.
- 9 H. Ohle, Ber., 67 (1934) 1750-1762.